Implement euclidean algorithm to compute GCD

Implement euclidean algorithm to compute the greatest common divisor (GCD).
Expected output:
304 = 2 * 150 + 4
150 = 37 * 4 + 2
4 = 2 * 2 + 0
gcd is 2
………
6 = 2 * 3 + 0
gcd is 3
from math import *

def euclid_algo(x, y, verbose=True):

  if x < y:               # We want x >= y
    return euclid_algo(y, x, verbose)
  print()

  while y != 0:
    if verbose:
        print('%s = %s * %s + %s' % (x, floor(x/y), y, x % y))
    x, y = y, x % y

  if verbose:
      print('gcd is %s' % x)

  return x

# test
euclid_algo(150, 304)
# 304 = 2 * 150 + 4
# 150 = 37 * 4 + 2
# 4 = 2 * 2 + 0
# gcd is 2

euclid_algo(1000, 10)
# 1000 = 100 * 10 + 0
# gcd is 10

euclid_algo(150, 9)
# 150 = 16 * 9 + 6
# 9 = 1 * 6 + 3
# 6 = 2 * 3 + 0
# gcd is 3